Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province

Author:

Li Wenxin12,Huang Yuancheng1,Shen Qian23,Yao Yue23ORCID,Xu Wenting24,Shi Jiarui25,Zhou Yuting2,Li Jinzhi2,Zhang Yuting2,Gao Hangyu2

Affiliation:

1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

4. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730030, China

5. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Jilin 130102, China

Abstract

The European Space Agency (ESA) developed the Sentinel-2 Multispectral Imager (MSI), which offers a higher spatial resolution and shorter repeat coverage, making it an important source for the remote-sensing monitoring of water bodies. Atmospheric correction is crucial for the monitoring of water quality. To compare the applicability of seven publicly available atmospheric correction processors (ACOLITE, C2RCC, C2XC, iCOR, POLYMER, SeaDAS, and Sen2Cor), we chose complex and diverse lakes in Qinghai Province, China, as the research area. The lakes were divided into three types based on the waveform characteristics of Rrs: turbid water bodies (class I lakes) represented by the Dabusun Lake (DBX), clean water bodies (class II lakes) represented by the Qinghai Lake (QHH), and relatively clean water bodies (class III lakes) represented by the Longyangxia Reservoir (LYX). Compared with the in situ Rrs, it was found that for the DBX, the Sen2Cor processor performed best. The POLYMER processor exhibited a good performance in the QHH. The C2XC processor performed well with the LYX. Using the Sen2Cor, POLYMER, and C2XC processors for classes I, II, and III, respectively, compared with the Sentinel-3 OLCI Level-2 Water Full Resolution (L2-WFR) products, it was found that the estimated Rrs from the POLYMER had the highest consistency. Slight deviations were observed in the estimation results for both the Sen2Cor and C2XC.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3