Image Segmentation and Filtering of Anaerobic Lagoon Floating Cover in Digital Elevation Model and Orthomosaics Using Unsupervised k-Means Clustering for Scum Association Analysis

Author:

Vien Benjamin Steven1ORCID,Kuen Thomas2ORCID,Rose Louis Raymond Francis3,Chiu Wing Kong1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia

2. Melbourne Water Corporation, 990 La Trobe Street, Docklands, VIC 3008, Australia

3. Defence Science & Technology Group, Fishermans Bend, VIC 3207, Australia

Abstract

In various engineering applications, remote sensing images such as digital elevation models (DEMs) and orthomosaics provide a convenient means of generating 3D representations of physical assets, enabling the discovery of new insights and analyses. However, the presence of noise and artefacts, particularly unwanted natural features, poses significant challenges, and their removal requires the application of filtering techniques prior to conducting analysis. Unmanned aerial vehicle-based photogrammetry is used at Melbourne Water’s Western Treatment Plant as a cost-effective and efficient method of inspecting the floating covers on the anaerobic lagoons. The focus of interest is the elevation profile of the floating covers for these sewage-processing lagoons and its implications for sub-surface scum accumulation, which can compromise the structural integrity of the engineered assets. However, unwanted artefacts due to trapped rainwater, debris, dirt, and other irrelevant structures can significantly distort the elevation profile. In this study, a machine learning algorithm is utilised to group distinct features on the floating cover based on an image segmentation process. An unsupervised k-means clustering algorithm is employed, which operates on a stacked 4D array composed of the elevation of the DEM and the RGB channels of the associated orthomosaic. In the cluster validation process, seven cluster groups were considered optimal based on the Calinski–Harabasz criterion. Furthermore, by utilising the k-means method as a filtering technique, three clusters contain features related to the elevations associated with the floating cover membrane, collectively representing 84% of the asset, with each cluster contributing at least 19% of the asset. The artefact groups constitute less than 6% of the asset and exhibit significantly different features, colour characteristics, and statistical measurements from those of the membrane groups. The study found notable improvements using the k-means filtering method, including a 59.4% average reduction in outliers and a 36.3% decrease in standard deviation compared to raw data. Additionally, employing the proposed method in the scum hardness analysis improved correlation strength by 13.1%, removing approximately 16% of the artefacts in total assets, in contrast to a 3.6% improvement with the median filtering method. This improved imaging will lead to significant benefits when integrating imagery into deep learning models for structural health monitoring and asset performance.

Funder

Melbourne Water Corporation and Australian Research Council Linkage Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3