A Machine Learning Approach for Anaerobic Reactor Performance Prediction Using Long Short-Term Memory Recurrent Neural Network

Author:

Abstract

Abstract. Predictive models are important to help manage high-value assets and to ensure optimal and safe operations. Recently, advanced machine learning algorithms have been applied to solve practical and complex problems, and are of significant interest due to their ability to adaptively ‘learn’ in response to changing environments. This paper reports on the data preparation strategies and the development and predictive capability of a Long Short-Term Memory recurrent neural network model for anaerobic reactors employed at Melbourne Water’s Western Treatment Plant for sewage treatment that includes biogas harvesting. The results show rapid training and higher accuracy in predicting biogas production when historical data, which include significant outliers, are preprocessed with z-score standardisation in comparison to those with max-min normalisation. Furthermore, a trained model with a reduced number of input variables via the feature selection technique based on Pearson’s correlation coefficient is found to yield good performance given sufficient dataset training. It is shown that the overall best performance model comprises the reduced input variables and data processed with z-score standardisation. This initial study provides a useful guide for the implementation of machine learning techniques to develop smarter structures and management towards Industry 4.0 concepts.

Publisher

Materials Research Forum LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3