Mg-Doped PLA Composite as a Potential Material for Tissue Engineering—Synthesis, Characterization, and Additive Manufacturing

Author:

Ali Fawad1,Al Rashid Ans1ORCID,Kalva Sumama Nuthana1,Koç Muammer1ORCID

Affiliation:

1. Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar

Abstract

Magnesium (Mg)/Polylactic acid (PLA) composites are promising materials for bone regeneration and tissue engineering applications. PLA is a biodegradable and biocompatible polymer that can be easily processed into various shapes and structures, such as scaffolds, films, and fibers, but has low biodegradability. Mg is a biocompatible metal that has been proven to have good biodegradability and osteoconductivity, which makes it suitable for bone tissue engineering. In this study, we prepared and characterized a Mg/PLA composite as a potential material for direct ink writing (DIW) in 3D printing. The results showed that the addition of Mg has a significant impact on PLA’s thermal and structural properties and has also significantly increased the degradation of PLA. XRD was used to determine the degree of crystallinity in the PLA/Mg composite, which provides insight into its thermal stability and degradation behavior. The crystallization temperature of PLA increased from 168 to 172 °C for a 15 wt% Mg incorporation, and the melting temperature reduced from 333 °C to 285 °C. The surface morphology and composition of these films were analyzed with SEM. The films with 5 wt% of Mg particles displayed the best-ordered honeycomb structure in their film form. Such structures are considered to affect the mechanical, biological and heat/mass transfer properties of the Mg/PLA composites and products. Finally, the composite ink was used as a feed for direct ink writing in 3D printing, and the preliminary 3D printing experiments were successful in resulting in dimensionally and structurally integral scaffold samples. The shape fidelity was not very good, and some research is needed to improve the rheological properties of the ink for DIW 3D printing.

Funder

QNRF

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3