Additive Manufacturing of Polymer/Mg-Based Composites for Porous Tissue Scaffolds

Author:

Ali Fawad,Kalva Sumama NuthanaORCID,Koç MuammerORCID

Abstract

Due to their commercial availability, superior processability, and biocompatibility, polymers are frequently used to build three-dimensional (3D) porous scaffolds. The main issues limiting the widespread clinical use of monophasic polymer scaffolds in the bone healing process are their inadequate mechanical strength and inappropriate biodegradation. Due to their mechanical strength and biocompatibility, metal-based scaffolds have been used for various bone regenerative applications. However, due to the mismatch in mechanical properties and nondegradability, they lack integration with the host tissues, resulting in the production of fiber tissue and the release of toxic ions, posing a risk to the durability of scaffolds. Due to their natural degradability in the body, Mg and its alloys increasingly attract attention for orthopedic and cardiovascular applications. Incorporating Mg micro-nano-scale particles into biodegradable polymers dramatically improves scaffolds and implants’ strength, biocompatibility, and biodegradability. Polymer biodegradable implants also improve the quality of life, particularly for an aging society, by eliminating the secondary surgery often needed to remove permanent implants and significantly reducing healthcare costs. This paper reviews the suitability of various biodegradable polymer/Mg composites for bone tissue scaffolds and then summarizes the current status and challenges of polymer/magnesium composite scaffolds. In addition, this paper reviews the potential use of 3D printing, which has a unique design capability for developing complex structures with fewer material waste at a faster rate, and with a personalized and on-site fabrication possibility.

Funder

QNRF

HBKU

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3