Optimization of Physical Activation Process by CO2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk

Author:

Tsai Chi-Hung1,Tsai Wen-Tien2ORCID

Affiliation:

1. Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan

2. Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

Abstract

In this work, the Honduras Mahogany (Swietenia macropnylla King, SMK) seed husk was used as a novel biomass resource for producing activated carbon by physical activation. The texture characteristics and chemical characterization of resulting products were investigated in correlation with the process parameters. Based on the thermochemical properties of the SMK biomass, the process conditions were set to a rate of about 10 °C/min under nitrogen (N2) flow of 500 cm3/min heated to 500 °C, then switched to carbon dioxide (CO2) flow of 100 cm3/min in the specified activation conditions (i.e., temperature of 700–850 °C for holding times of 0–60 min). Our findings showed that the texture characteristics (i.e., surface area and pore volume) increased with an activation temperature increase from 700 to 800 °C for a holding time of 30 min but gradually decreased as the temperature increased thereafter. Similarly, the texture characteristics also indicated an increasing trend with the residence time extending from 0 min to 30 min but slightly decreased as the time was extended to 60 min. Therefore, the optimal activation conditions for producing SMK-based activated carbon should be set at 800 °C for a holding time of 30 min to obtain the maximal texture characteristics (i.e., BET surface area of 966 m2/g and total pore volume of 0.43 cm3/g). On the other hand, the chemical characteristics were analyzed by energy dispersive X-ray spectroscopy (EDS) and Fourier Transform infrared spectroscopy (FTIR), showing oxygen complexes contained on the hydrophilic surface of the resulting activated carbon.

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Bansal, R.C., Donnet, J.B., and Stoeckli, F. (1988). Active Carbon, Marcel Dekker.

2. Marsh, H., and Rodriguez-Reinoso, F. (2006). Activated Carbon, Elsevier.

3. Biomass-derived porous carbons as supercapacitor electrodes—A review;Shaker;New Carbon Mater.,2021

4. A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors;Luo;J. Energy Storage,2022

5. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review;Manasa;J. Energy Storage,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3