Effect of Post-Washing on Textural Characteristics of Carbon Materials Derived from Pineapple Peel Biomass

Author:

Tsai Chi-Hung1,Tsai Wen-Tien2ORCID,Kuo Li-An3

Affiliation:

1. Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan

2. Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

3. Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

Abstract

Porous carbon materials have been widely used to remove pollutants from the liquid-phase streams. However, their limited pore properties could be a major problem. In this work, the effects of post-washing methods (i.e., water washing and acid washing) on the textural characteristics of the resulting biochar and activated carbon products from pineapple peel biomass were investigated in the carbonization and CO2 activation processes. The experiments were set at an elevated temperature (i.e., 800 °C) holding for 30 min. It was found that the enhancement in pore property reached about a 50% increase rate, increasing from 569.56 m2/g for the crude activated carbon to the maximal BET surface area of 843.09 m2/g for the resulting activated carbon by water washing. The resulting activated carbon materials featured the microporous structures but also were characteristic of the mesoporous solids. By contrast, the enhancement in the increase rate by about 150% was found in the resulting biochar products. However, there seemed to be no significant variations in pore property with post-washing methods. Using the energy dispersive X-ray spectroscopy (EDS) and the Fourier Transform infrared spectroscopy (FTIR) analyses, it showed some oxygen-containing functional groups or complexes, potentially posing the hydrophilic characters on the surface of the resulting carbon materials.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3