Abstract
Reliable bounding of a function’s range is essential for deterministic global optimization, approximation, locating roots of nonlinear equations, and several other computational mathematics areas. Despite years of extensive research in this direction, there is still room for improvement. The traditional and compelling approach to this problem is interval analysis. We show that accounting convexity/concavity can significantly tighten the bounds computed by interval analysis. To make our approach applicable to a broad range of functions, we also develop the techniques for handling nondifferentiable composite functions. Traditional ways to ensure the convexity fail in such cases. Experimental evaluation showed the remarkable potential of the proposed methods.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献