Design and Development of Ultrabroadband, High-Gain, and High-Isolation THz MIMO Antenna with a Complementary Split-Ring Resonator Metamaterial

Author:

Armghan Ammar1ORCID,Aliqab Khaled1ORCID,Alsharari Meshari1ORCID,Alsalman Osamah2ORCID,Parmar Juveriya34ORCID,Patel Shobhit K.4ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

2. Department of Electrical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

3. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, 1400 R St. Nebraska, Lincoln, NE 68588, USA

4. Department of Computer Engineering, Marwadi University, Rajkot 360003, India

Abstract

The need for high-speed communication has created a way to design THz antennas that operate at high frequencies, speeds, and data rates. In this manuscript, a THz MIMO antenna is designed using a metamaterial. The two-port antenna design proposed uses a complementary split-ring resonator patch. The design results are also compared with a simple patch antenna to show the improvement. The design shows a better isolation of 50 dB. A broadband width of 8.3 THz is achieved using this complementary split-ring resonator design. The percentage bandwidth is 90%, showing an ultrabroadband response. The highest gain of 10.34 dB is achieved with this design. Structural parametric optimization is applied to the complementary split-ring resonator MIMO antenna design. The designed antenna is also optimized by applying parametric optimization to different geometrical parameters. The optimized design has a 20 µm ground plane, 14 µm outer ring width, 6 µm inner ring width, and 1.6 µm substrate thickness. The proposed antenna with its broadband width, high gain, and high isolation could be applied in high-speed communication devices.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3