Simplicial-Map Neural Networks Robust to Adversarial Examples

Author:

Paluzo-Hidalgo EduardoORCID,Gonzalez-Diaz RocioORCID,Gutiérrez-Naranjo Miguel A.ORCID,Heras JónathanORCID

Abstract

Broadly speaking, an adversarial example against a classification model occurs when a small perturbation on an input data point produces a change on the output label assigned by the model. Such adversarial examples represent a weakness for the safety of neural network applications, and many different solutions have been proposed for minimizing their effects. In this paper, we propose a new approach by means of a family of neural networks called simplicial-map neural networks constructed from an Algebraic Topology perspective. Our proposal is based on three main ideas. Firstly, given a classification problem, both the input dataset and its set of one-hot labels will be endowed with simplicial complex structures, and a simplicial map between such complexes will be defined. Secondly, a neural network characterizing the classification problem will be built from such a simplicial map. Finally, by considering barycentric subdivisions of the simplicial complexes, a decision boundary will be computed to make the neural network robust to adversarial attacks of a given size.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference22 articles.

1. Intriguing properties of neural networks;Szegedy;arXiv,2013

2. Perceptual Evaluation of Adversarial Attacks for CNN-based Image Classification

3. BAE: BERT-based Adversarial Examples for Text Classification;Garg;arXiv,2020

4. Adversarial Attacks on Time Series

5. Adversarial attacks on an oblivious recommender

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3