Enhance Domain-Invariant Transferability of Adversarial Examples via Distance Metric Attack

Author:

Zhang Jin,Peng WenyuORCID,Wang RuxinORCID,Lin Yu,Zhou Wei,Lan Ge

Abstract

A general foundation of fooling a neural network without knowing the details (i.e., black-box attack) is the attack transferability of adversarial examples across different models. Many works have been devoted to enhancing the task-specific transferability of adversarial examples, whereas the cross-task transferability is nearly out of the research scope. In this paper, to enhance the above two types of transferability of adversarial examples, we are the first to regard the transferability issue as a heterogeneous domain generalisation problem, which can be addressed by a general pipeline based on the domain-invariant feature extractor pre-trained on ImageNet. Specifically, we propose a distance metric attack (DMA) method that aims to increase the latent layer distance between the adversarial example and the benign example along the opposite direction guided by the cross-entropy loss. With the help of a simple loss, DMA can effectively enhance the domain-invariant transferability (for both the task-specific case and the cross-task case) of the adversarial examples. Additionally, DMA can be used to measure the robustness of the latent layers in a deep model. We empirically find that the models with similar structures have consistent robustness at depth-similar layers, which reveals that model robustness is closely related to model structure. Extensive experiments on image classification, object detection, and semantic segmentation demonstrate that DMA can improve the success rate of black-box attack by more than 10% on the task-specific attack and by more than 5% on cross-task attack.

Funder

National Natural Science Foundation of China

Yunnan Province Science Foundation for Youths

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Alpha-Num: a novel architecture for generating adversarial examples for bypassing NLP-based clickbait detection mechanisms;International Journal of Information Security;2024-05-13

2. Artificial Intelligence Enabled Scale Invariant Object Detection and Tracking Model on Color Images;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

3. Deer Hunting Optimization with Path Augmented RetinaNet Model for Scale-Invariant Object Detection and Tracking;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3