Formation of the Optimal Load of High School Students Using a Genetic Algorithm and a Neural Network

Author:

Dogadina Elena PetrovnaORCID,Smirnov Michael Viktorovich,Osipov Aleksey ViktorovichORCID,Suvorov Stanislav Vadimovich

Abstract

The problem of the effectiveness of teaching can be successfully solved only if the high quality of lessons is supported by well-organized homework of students. The question of homework occupies one of the main places in educational activities since this question is directly related to the health of the child. A competent approach to minimizing the time for completing homework, taking into account the maximum efficiency obtained from the learning process, can preserve the health of students to some extent. The article describes a method for obtaining the most comfortable results of the process of completing homework, which are a Pareto set. This method is implemented using a genetic algorithm and queuing theory, and the selection of homework is carried out on the basis of intellectual analysis of the text of tasks and is a scale of a certain range. The proposed algorithm successfully obtains the solutions of the Pareto set and minimizes the efforts of school students while achieving the maximum efficiency of the educational process to preserve their health. Compared with other known algorithms, the results obtained show that the proposed algorithm demonstrates fairly accurate optimization characteristics presented in the form of a Pareto set. Furthermore, combining a genetic algorithm, queuing theory apparatus, and a neural network makes it possible to model the studied subject area more accurately.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3