Evaluation of the Forms of Education of High School Students Using a Hybrid Model Based on Various Optimization Methods and a Neural Network

Author:

Dogadina Elena PetrovnaORCID,Smirnov Michael Viktorovich,Osipov Aleksey ViktorovichORCID,Suvorov Stanislav VadimovichORCID

Abstract

This article deals with the multicriteria programming model to optimize the time of completing home assignments by school students in both in-class and online forms of teaching. To develop a solution, we defined 12 criteria influencing the school exercises’ effectiveness. In this amount, five criteria describe exercises themselves and seven others the conditions at which the exercises are completed. We used these criteria to design a neural network, which output influences target function and the search for optimal values with three optimization techniques: backtracking search optimization algorithm (BSA), particle swarm optimization algorithm (PSO), and genetic algorithm (GA). We propose to represent the findings for the optimal time to complete homework as a Pareto set.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

Reference23 articles.

1. Sanitary Rules SP 2.4.3648-20. Sanitary and Epidemiological Requirements for the Organization of Education and Training, Recreation and Health Improvement of Children and Youth; Approved by the Chief State Sanitary Doctor Russian Federation Dated 28 September 2020 N 28https://docs.cntd.ru/document/566085656

2. An International Comparative Study on Exercise Questions in Middle School Mathematics Textbooks;Wang,2021

3. Exposure to Cyberbullying, Cybervictimization, and Related Factors Among Junior High School Students

4. Evaluating class and school effects on the joint student achievements in different subjects: a bivariate semiparametric model with random coefficients

5. School zoning system using K-Means algorithm for high school students in Makassar City

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3