SCCDNet: A Pixel-Level Crack Segmentation Network

Author:

Li HaotianORCID,Yue Zhuang,Liu Jingyu,Wang YiORCID,Cai Huaiyu,Cui Kerang,Chen Xiaodong

Abstract

Cracks are one of the most serious defects that threaten the safety of bridges. In order to detect different forms of cracks in different collection environments quickly and accurately, we proposed a pixel-level crack segmentation network based on convolutional neural networks, which is called the Skip Connected Crack Detection Network (SCCDNet). The network is composed of three parts: the Encoder module with 13 convolutional layers pretrained in the VGG-16 network, the Decoder module with a densely connected structure, and the Skip-Squeeze-and-Excitation (SSE) module which connects the feature map shaving the same resolution in the Encoder and Decoder. We used depthwise separable convolution to improve the accuracy of crack segmentation while reducing the complexity of the model. In this paper, a dataset containing cracks collected in different scenes was established, and SCCDNet was trained and tested on this dataset. Compared with the advanced models, SCCDNet obtained the best crack segmentation performance, while F-score reached 0.7763.

Funder

Tianjin Municipal Transportation Commission Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Increasing the robustness of material-specific deep learning models for crack detection across different materials

2. Surface defects detection for ceramic tiles using image processing and morphological techniques;Elbehiery;IJREAS,2005

3. Wavelet transform on multi-GPU for real-time pavement distress detection;Georgieva,2015

4. Matched Filtering Algorithm for Pavement Cracking Detection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3