Remaining Useful Life Prediction of Cutting Tools Using an Inverse Gaussian Process Model

Author:

Huang Yuanxing,Lu ZhiyuanORCID,Dai WeiORCID,Zhang Weifang,Wang Bin

Abstract

In manufacturing, cutting tools gradually wear out during the cutting process and decrease in cutting precision. A cutting tool has to be replaced if its degradation exceeds a certain threshold, which is determined by the required cutting precision. To effectively schedule production and maintenance actions, it is vital to model the wear process of cutting tools and predict their remaining useful life (RUL). However, it is difficult to determine the RUL of cutting tools with cutting precision as a failure criterion, as cutting precision is not directly measurable. This paper proposed a RUL prediction method for a cutting tool, developed based on a degradation model, with the roughness of the cutting surface as a failure criterion. The surface roughness was linked to the wearing process of a cutting tool through a random threshold, and accounts for the impact of the dynamic working environment and variable materials of working pieces. The wear process is modeled using a random-effects inverse Gaussian (IG) process. The degradation rate is assumed to be unit-specific, considering the dynamic wear mechanism and a heterogeneous population. To adaptively update the model parameters for online RUL prediction, an expectation–maximization (EM) algorithm has been developed. The proposed method is illustrated using an example study. The experiments were performed on specimens of 7109 aluminum alloy by milling in the normalized state. The results reveal that the proposed method effectively evaluates the RUL of cutting tools according to the specified surface roughness, therefore improving cutting quality and efficiency.

Funder

National Fundamental Research Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3