Determination of Bayesian Cramér–Rao Bounds for Estimating Uncertainties in the Bio-Optical Properties of the Water Column, the Seabed Depth and Composition in a Coastal Environment

Author:

Guillaume Mireille1ORCID,Minghelli Audrey23ORCID,Chami Malik45ORCID,Lei Manchun6ORCID

Affiliation:

1. Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France

2. Laboratoire d’Informatique et Système (LIS), Université de Toulon, CNRS UMR 7020, F-83041 Toulon, France

3. Laboratoire d’Informatique et Système (LIS), Aix Marseille Université, F-13288 Marseille, France

4. Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 96 Boulevard de l’Observatoire, CS 34229, CEDEX 4, F-06304 Nice, France

5. Sorbonne Université, UFR 918, F-75006 Paris, France

6. LASTIG, Université Gustave Eiffel, ENSG, IGN, F-94160 Saint-Mandé, France

Abstract

The monitoring of coastal areas using remote sensing techniques is an important issue to determine the bio-optical properties of the water column and the seabed composition. New hyperspectral satellite sensors (e.g., PRISMA, DESIS or EnMap) are developed to periodically observe ecosystems. The uncertainties in the retrieved geophysical products remain a key issue to release reliable data useful for the end-users. In this study, an analytical approach based on Information theory is proposed to investigate the Cramér–Rao lower Bounds (CRB) for the uncertainties in the ocean color parameters. Practically, during the inversion process, an a priori knowledge on the estimated parameters is used since their range of variation is supposed to be known. Here, a Bayesian approach is attempted to handle such a priori knowledge. A Bayesian CRB (BCRB) is derived using the Lee et al. semianalytical radiative transfer model dedicated to shallow waters. Both environmental noise and bio-optical parameters are supposed to be random vectors that follow a Gaussian distibution. The calculation of CRB and BCRB is carried out for two hyperspectral images acquired above the French mediterranean coast. The images were obtained from the recently launched hyperspectral sensors, namely the DESIS sensor (DLR Earth Sensing Imaging Spectrometer, German Aerospace Center), and PRISMA (Precursore IpperSpettrale della Mission Applicativa—ASI, Italian Space Adjency) sensor. The comparison between the usual CRB approach, the proposed BCRB approach and experimental errors obtained for the retrieved bathymetry shows the better ability of the BCRB to determine minimum error bounds.

Funder

French Centre National d’Etudes Spatiales (CNES), France

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference85 articles.

1. How much benthic information can be retrieved with hyperspectral sensor from the optically complex coastal waters?;Paavel;J. Appl. Remote Sens.,2020

2. Alevizos, E. (2020). A Combined Machine Learning and Residual Analysis Approach for Improved Retrieval of Shallow Bathymetry from Hyperspectral Imagery and Sparse Ground Truth Data. Remote Sens., 12.

3. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context;Marcos;Phys. Chem. Earth Parts A/B/C,2011

4. Submerged benthic macrophytes in Mediterranean lagoons: Distribution patterns in relation to water chemistry and depth;Plus;Hydrobiologia,2017

5. Eutrophication in Transitional Waters: An Overview;Viaroli;Transit. Waters Monogr.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3