A Combined Machine Learning and Residual Analysis Approach for Improved Retrieval of Shallow Bathymetry from Hyperspectral Imagery and Sparse Ground Truth Data

Author:

Alevizos EvangelosORCID

Abstract

Mapping shallow bathymetry by means of optical remote sensing has been a challenging task of growing interest in recent years. Particularly, many studies exploit earlier empirical models together with the latest multispectral satellite imagery (e.g., Sentinel 2, Landsat 8). However, in these studies, the accuracy of resulting bathymetry is (a) limited for deeper waters (>15 m) and/or (b) is being influenced by seafloor type albedo. This study explores further the capabilities of hyperspectral satellite imagery (Hyperion), which provides several spectral bands in the visible spectrum, along with existing reference bathymetry. Bathymetry predictors are created by applying the semi-empirical approach of band ratios on hyperspectral imagery. Then, these predictors are fed to machine learning regression algorithms for predicting bathymetry. Algorithm performance is being further compared to bathymetry predictions from multiple linear regression analysis. Following the initial predictions, the residual bathymetry values are interpolated by applying the Ordinary Kriging method. Then, the predicted bathymetry from all three algorithms along with their associated residual grids is used as predictors at a second processing stage. Validation results show that by using a second stage of processing, the root-mean-square error values of predicted bathymetry is being improved by ≈1 m even for deeper water (up to 25 m). It is suggested that this approach is suitable for (a) contributing wide-scale, high-resolution shallow bathymetry toward the goals of the Seabed 2030 program and (b) as a coarse resolution alternative to effort-consuming single-beam sonar or costly airborne bathymetric laser surveying.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3