Thermal Discharge Temperature Retrieval and Monitoring of NPPs Based on SDGSAT-1 Images

Author:

Huang Wenwen12ORCID,Jiao Jingjie12,Zhao Lixing12,Hu Zhuoyue3,Peng Xiaohong23,Yang Lan23,Li Xiaoyan1ORCID,Chen Fansheng134ORCID

Affiliation:

1. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China

4. International Research Center of Big Data for Sustainable Development Goals (CBAS), Beijing 100094, China

Abstract

High-accuracy sea surface temperature (SST) retrieval near nuclear power plants (NPPs) is one of the most significant indicators for evaluating marine ecological environment quality, monitoring the real-time situation of thermal discharge, and supporting planning decisions. However, complex computations, the inaccessible real-time vertical profile of the atmosphere, and the uncertainty of atmospheric profile data increase the error of SST retrieval. Additionally, influenced by their low spatial resolution, the widely used AVHRR/MODIS remote sensing images (RSIs) are unable to retrieve the detailed distribution of SST in small scale regions such as coastal NPPs. In this paper, we propose a simplified split-window-based temperature retrieval method (the SW method) suitable for SDGSAT-1 30 m thermal infrared spectrometer (TIS) RSIs. Specially, this method only needs atmospheric transmittance and surface emissivity by counteracting the average atmospheric temperature to monitor the thermal discharge of offshore NPPs. First, the geometric and radiometric calibrated thermal infrared and multi-spectral cloudless data of the target regions are selected to obtain the corresponding apparent radiance of the RSIs. Second, in accordance with the red and near-infrared (NIR) bands of multi-spectral RSIs, the surface emissivity is calculated to distinguish water from land. Next, we determine the atmospheric profile parameters from the weather conditions of the target region at the imaging time. Finally, according to the theory of surface-atmosphere radiative transfer, the SST of target regions is retrieved with the proposed SW method, and the results are compared with those of the conventional radiative transfer equation (RTE), mono-window (MW), and the nonlinear sea surface temperature (NLSST) algorithms. The experimental results indicate that the SST retrieved from the split-window algorithms (i.e., SW and NLSST) are generally higher than those of the single-channel algorithms (i.e., RTE and MW). The SST difference between the SW algorithm and the NLSST algorithm is within 0.5 °C. In addition, SDGSAT-1 can monitor the seasonal detailed variation of the thermal discharge near coastal NPPs. This article is the first to attempt to quantitative small-scale SST retrieval based on thermal infrared and multi-spectral images obtained from the SDGSAT-1 TIS and a multispectral imager (MII), and therefore, provide an effective reference for marine environment monitoring.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3