Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China

Author:

Zhang Zhihua,Wang DifengORCID,Cheng Yinhe,Gong Fang

Abstract

Thermal discharge (i.e., warm water) from nuclear power plants (NPPs) in Daya Bay, China, was analyzed in this study. To determine temporal and spatial patterns as well as factors affecting thermal discharge, data were acquired by the Landsat series of remote-sensing satellites for the period 1993–2020. First, sea surface temperature (SST) data for waters off NPPs were retrieved from Landsat imagery using a radiative transfer equation in conjunction with a split-window algorithm. Then, retrieved SST data were used to analyze seasonal and interannual changes in areas affected by NPP thermal discharge, as well as the effects of NPP installed capacity, tides, and wind field on the diffusion of thermal discharge. Analysis of interannual changes revealed an increase in SST with an increase in NPP installed capacity, with the area affected by increased drainage outlet temperature increasing to different degrees. Sea surface temperature and NPP installed capacity were significantly linearly related. Both flood tides (peak spring and neap) and ebb tides (peak spring and neap) affected areas of warming zones, with ebb tides having greater effects. The total area of all warming zones in summer was approximately twice that in spring, regardless of whether winds were favorable (i.e., westerly) or adverse (i.e., easterly). The effects of tides on areas of warming zones exceeded those of winds.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Distribution of therm-water pollution of nuclear powerplant using the thermal infrared Band of HJ-IRS data-taking Daya Bay as an example;Liang;Remote Sens. Inf.,2012

2. Characterization Factors for Thermal Pollution in Freshwater Aquatic Environments

3. Estimation of sea surface temperatures from two infrared window measurements with different absorption

4. Hyperspectral Pansharpening: A Review

5. Using MODIS imagery to map sea surface temperature;Liu;Geospat. Inf.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3