Affiliation:
1. Department of Civil Engineering, The University of Mississippi, University, MS 38677, USA
2. Department of Geology and Geological Engineering, The University of Mississippi, University, MS 38677, USA
Abstract
Monitoring and managing groundwater resources is critical for sustaining livelihoods and supporting various human activities, including irrigation and drinking water supply. The most common method of monitoring groundwater is well water level measurements. These records can be difficult to collect and maintain, especially in countries with limited infrastructure and resources. However, long-term data collection is required to characterize and evaluate trends. To address these challenges, we propose a framework that uses data from the Gravity Recovery and Climate Experiment (GRACE) mission and downscaling models to generate higher-resolution (1 km) groundwater predictions. The framework is designed to be flexible, allowing users to implement any machine learning model of interest. We selected four models: deep learning model, gradient tree boosting, multi-layer perceptron, and k-nearest neighbors regressor. To evaluate the effectiveness of the framework, we offer a case study of Sunflower County, Mississippi, using well data to validate the predictions. Overall, this paper provides a valuable contribution to the field of groundwater resource management by demonstrating a framework using remote sensing data and machine learning techniques to improve monitoring and management of this critical resource, especially to those who seek a faster way to begin to use these datasets and applications.
Funder
National Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献