Ruthenium(II) and Iridium(III) Complexes as Tested Materials for New Anticancer Agents

Author:

Masternak JoannaORCID,Gilewska Agnieszka,Barszcz Barbara,Łakomska IwonaORCID,Kazimierczuk KatarzynaORCID,Sitkowski JerzyORCID,Wietrzyk JoannaORCID,Kamecka Anna,Milczarek MagdalenaORCID

Abstract

The oncological use of cisplatin is hindered by its severe side effects and a very important resistance problem. To overcome these problems, scientists have attempted to design new generation transition-metal anticancer complexes. In this study, we present new complexes, ruthenium(II) [(η6-p-cymene)RuCl(py2CO)]PF6 (1), iridium(III) [(η5-Cp)IrCl(py2CO)]PF6 (2), and NH4[IrCl4(py2CO)]·H2O (3), based on di-2-pyridylketone (py2CO). The prepared complexes were characterized by FTIR, 1H, 13C, 15N NMR, UV-Vis, PL and elemental analysis techniques. The single-crystal X-ray structure analysis and comparative data revealed pseudo-octahedral half-sandwich 1 and 2 complexes and octahedral tetrachloroiridate(III) 3 with a rare chelating κ2N,O coordination mode of py2CO. The compounds were tested in vitro against three cancer cell lines—colorectal adenoma (LoVo), myelomonocytic leukaemia (MV-4-11), breast adenocarcinoma (MCF-7), and normal fibroblasts (BALB/3T3). The most promising results were obtained for iridium(III) complex 3 against MV-4-11 (IC50 = 35.8 ± 13.9 µg/mL) without a toxic effect against normal BALB/3T3, which pointed towards its selectivity as a potential anticancer agent. Extensive research into their mode of binding with DNA confirmed for 1 and 2 complexes non-classical binding modes, while the 3D circular dichroism (CD) experiment (ΔTm) suggested that 3 induced the probable formation of covalent bonds with DNA. In addition, the obtained iridium complexes induce ROS, which, in synergy with hydrolysis promoting DNA bonding, may lead to cancer cell death.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3