Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon

Author:

Younes Younes AlORCID,Barczyk Martin

Abstract

Navigating robotic systems autonomously through unknown, dynamic and GPS-denied environments is a challenging task. One requirement of this is a path planner which provides safe trajectories in real-world conditions such as nonlinear vehicle dynamics, real-time computation requirements, complex 3D environments, and moving obstacles. This paper presents a methodological motion planning approach which integrates a novel local path planning approach with a graph-based planner to enable an autonomous vehicle (here a drone) to navigate through GPS-denied subterranean environments. The local path planning approach is based on a recently proposed method by the authors called Nonlinear Model Predictive Horizon (NMPH). The NMPH formulation employs a copy of the plant dynamics model (here a nonlinear system model of the drone) plus a feedback linearization control law to generate feasible, optimal, smooth and collision-free paths while respecting the dynamics of the vehicle, supporting dynamic obstacles and operating in real time. This design is augmented with computationally efficient algorithms for global path planning and dynamic obstacle mapping and avoidance. The overall design is tested in several simulations and a preliminary real flight test in unexplored GPS-denied environments to demonstrate its capabilities and evaluate its performance.

Funder

Alberta Innovates

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3