Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates

Author:

AlHammadi Alya,Al-Saif NasserORCID,Al-Sumaiti Ameena SaadORCID,Marzband MousaORCID,Alsumaiti Tareefa,Heydarian-Forushani Ehsan

Abstract

The United Arab Emirates is moving towards the use of renewable energy for many reasons, including the country’s high energy consumption, unstable oil prices, and increasing carbon dioxide emissions. The usage of electric vehicles can improve public health and reduce emissions that contribute to climate change. Thus, the usage of renewable energy resources to meet the demands of electric vehicles is the major challenge influencing the development of an optimal smart system that can satisfy energy requirements, enhance sustainability and reduce negative environmental impacts. The objective of this study was to examine different configurations of hybrid renewable energy systems for electric vehicle charging in Abu Dhabi city, UAE. A comprehensive study was conducted to investigate previous electric vehicle charging approaches and formulate the problem accordingly. Subsequently, methods for acquiring data with respect to the energy input and load profiles were determined, and a techno-economic analysis was performed using Hybrid Optimization of Multiple Energy Resources (HOMER) software. The results demonstrated that the optimal electric vehicle charging model comprising solar photovoltaics, wind turbines, batteries and a distribution grid was superior to the other studied configurations from the technical, economic and environmental perspectives. An optimal model could produce excess electricity of 22,006 kWh/year with an energy cost of 0.06743 USD/kWh. Furthermore, the proposed battery–grid–solar photovoltaics–wind turbine system had the highest renewable penetration and thus reduced carbon dioxide emissions by 384 tons/year. The results also indicated that the carbon credits associated with this system could result in savings of 8786.8 USD/year. This study provides new guidelines and identifies the best indicators for electric vehicle charging systems that will positively influence the trend in carbon dioxide emissions and achieve sustainable electricity generation. This study also provides a valid financial assessment for investors looking to encourage the use of renewable energy.

Funder

Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3