Implementing Tri-Brid Energy Systems for Renewable Integration in Southern Alberta, Canada

Author:

Aftab Mohammad Adnan1,Byrne James1,Hazendonk Paul2,Johnson Dan1,Spencer Locke3ORCID,Weis Tim4

Affiliation:

1. Department of Geography and Environment, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

2. Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

3. Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

4. Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada

Abstract

The steep decline in the price of wind turbines and solar photovoltaics provides a possibility to decarbonize electricity deeply and affordably. This study uses the HOMER Pro energy modeling tool to model an optimized grid-connected renewable energy system for a community in southern Alberta, Canada. The study’s goal is to identify the best renewable energy technology combinations that can provide electricity at the lowest levelized cost of energy (LCOE) and has lower greenhouse gas emissions as compared to the electricity produced by traditional fossil fuel. Gleichen is a small town in southern Alberta that is close to numerous commercial wind and solar projects given the region’s high quality renewable resources. “Tri-brid” systems consisting of wind turbines, solar photovoltaics, and battery energy storage systems (BESS) are considered and compared based on electricity prices, net present cost, and greenhouse gas emissions savings. This tri-brid system is connected to the grid to sell excess generated electricity or buy electricity when there is less or no availability of solar and wind energy. The tri-brid energy system has an estimated LCOE of 0.0705 CAD/kWh, which is competitive with the price of electricity generated by natural gas and coal, which is 0.127 CAD/kWh.

Funder

MITACS, Old Sun Community College, and the partner organization Siksika SRDL Group

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3