Quantitative Comparisons of Outer-Rotor Permanent Magnet Machines of Different Structures/Phases for In-Wheel Electrical Vehicle Application

Author:

Gong JinlinORCID,Zhao Benteng,Huang Youxi,Semail EricORCID,Nguyen Ngac KyORCID

Abstract

As one of the key components, low-speed direct-drive in-wheel machines with high compact volume and high torque density are important for the traction system of electric vehicles (EVs). This paper introduces four different types of outer-rotor permanent magnet motors for EVs, including one five-phase SPM machine, one three-phase IPM machine with V-shaped PMs, one seven-phase axial flux machine (AFM) of sandwich structure and finally one hybrid flux (radial and axial) machine with a third rotor with V-shaped PMs added to the AFM. Firstly, the design criteria and basic operation principle are compared and discussed. Then, the key properties are analyzed using the Finite Element Method (FEM). The electromagnetic properties of the four fractional slot tooth concentrated winding in-wheel motors with similar dimensions are quantitatively compared, including air-gap flux density, electromotive force, field weakening capability, torque density, losses, and fault tolerant capability. The results show that the multi-phase motors have high torque density and high fault tolerance and are suitable for direct drive applications in EVs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3