Evaluating Soil–Root Interaction of Hybrid Larch Seedlings Planted under Soil Compaction and Nitrogen Loading

Author:

Sugai TetsutoORCID,Yokoyama Satoko,Tamai Yutaka,Mori Hirotaka,Marchi EnricoORCID,Watanabe Toshihiro,Satoh Fuyuki,Koike TakayoshiORCID

Abstract

Although compacted soil can be recovered through root development of planted seedlings, the relationship between root morphologies and soil physical properties remain unclear. We investigated the impacts of soil compaction on planted hybrid larch F1 (Larix gmelinii var. japonica×L. kaempferi, hereafter F1) seedlings with/without N loading. We assumed that N loading might increase the fine root proportion of F1 seedlings under soil compaction, resulting in less effects of root development on soil recovery. We established experimental site with different levels of soil compaction and N loading, where two-year-old F1 seedlings were planted. We used a hardness change index (HCI) to quantify a degree of soil hardness change at each depth. We evaluated root morphological responses to soil compaction and N loading, focusing on ectomycorrhizal symbiosis. High soil hardness reduced the total dry mass of F1 seedlings by more than 30%. Significant positive correlations were found between HCI and root proportion, which indicated that F1 seedling could enhance soil recovery via root development. The reduction of fine root density and its proportion due to soil compaction was observed, while these responses were contrasting under N loading. Nevertheless, the relationships between HCI and root proportion were not changed by N loading. The relative abundance of the larch-specific ectomycorrhizal fungi under soil compaction was increased by N loading. We concluded that the root development of F1 seedling accelerates soil recovery, where N loading could induce root morphological changes under soil compaction, resulting in the persistent relationship between root development and soil recovery.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3