The Effects of Soil Compaction on the Growth and Architecture of the Seedlings of Species Commonly Used for Afforestation in Iran

Author:

Jourgholami Meghdad1ORCID,Hosseiniala Elahe Alsadat1,Latterini Francesco2ORCID,Venanzi Rachele3ORCID,Picchio Rodolfo3ORCID

Affiliation:

1. Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj 999067, Iran

2. Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland

3. Department of Agriculture and Forest Sciences, Tuscia University, Via San Camillo de Lellis, 01100 Viterbo, Italy

Abstract

The aim of the present study was to elucidate the effects of soil compaction on the seedlings of two species of deciduous (Acer velutinum and Alnus subcordata) and evergreen trees (Pinus eldarica and Pinus nigra) in terms of above- and below-ground morphology in a greenhouse. Six soil compaction levels were applied: the lowest intensity (control), very low, low, moderate, heavy, and very heavy. The results showed that there were different effects according to the species. These effects were on lateral root length, stem diameter, leaf dry biomass, SSL (specific stem length), SRL (specific root length), LMR (leaf mass ratio), RMR (root mass ratio), SMR (stem mass ratio), and R/S (root-to-shoot ratio). The results showed that soil penetration resistance (SPR) had a significant effect on seedling variables such as lateral root length, stem diameter, leaf dry biomass, and SRL (p < 0.05). A. velutinum seedlings have the highest values of growth variables compared to three other species, followed by A. subcordata seedlings. The two evergreen species, Pinus eldarica and Pinus nigra, have the lowest values of these growth variables. It is worth noting that we found that deciduous species had enhanced growth up to a moderate compaction level (1.3 MPa), while the growth decreased at an SPR that was higher than this value.

Funder

Italian Ministry for education, University and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3