Effects of pH and NaCl on the Spatial Structure and Conformation of Myofibrillar Proteins and the Emulsion Gel System—Insights from Computational Molecular Dynamics on Myosin of Golden Pompano

Author:

Xue Changfeng123,Pei Zhisheng123,Wen Pan23,Chin Yaoxian1234ORCID,Hu Yaqin123ORCID

Affiliation:

1. Hainan Provincial Academician Team Innovation Center, Hainan Tropical Ocean University, Sanya 572022, China

2. Marine Food Engineering Technology Research Center of Hainan Province, Hainan Tropical Ocean University, Sanya 572022, China

3. Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China

4. Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China

Abstract

In this study, the effects of pH and NaCl concentrations on the structure of golden pompano myosin and emulsion gel were analyzed using SEM in combination with molecular dynamics simulations (MDS). The microscopic morphology and spatial structure of myosin were investigated at different pH (3.0, 7.0, and 11.0) and NaCl concentrations (0.0, 0.2, 0.6, and 1.0 M), and their effects on the stability of emulsion gels were discussed. Our results show that pH had a greater effect on the microscopic morphology of myosin than NaCl. The MDS results show that under the condition of pH 7.0 and 0.6 M NaCl, the myosin expanded and experienced significant fluctuations in its amino acid residues. However, NaCl showed a greater effect on the number of hydrogen bonds than pH. Although changes in pH and NaCl concentrations only slightly altered the secondary structures in myosin, they, nevertheless, significantly influenced the protein spatial conformation. The stability of the emulsion gel was affected by pH changes but not NaCl concentrations, which only affect the rheology. The best elastic modulus G″ of the emulsion gel was obtained at pH 7.0 and 0.6 M NaCl. Based on the results, we conclude that pH changes have a greater influence than NaCl concentrations on the spatial structure and conformation of myosin, contributing to the instability of its emulsion gel state. The data from this study would serve as a valuable reference for emulsion gel rheology modification in future research.

Funder

The Innovation Platform for Academicians of Hainan Province

Hainan Provincial Natural Science Foundation of China

Scientific Research Foundation of Hainan Tropical Ocean University

National Science Foundation of Hainan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3