Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach

Author:

Younes Khaled1ORCID,Kharboutly Yahya1,Antar Mayssara1ORCID,Chaouk Hamdi1,Obeid Emil1ORCID,Mouhtady Omar1ORCID,Abu-samha Mahmoud1,Halwani Jalal2ORCID,Murshid Nimer1ORCID

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

2. Water and Environment Sciences Lab, Lebanese University, Tripoli 22100, Lebanon

Abstract

Water scarcity is a global problem affecting millions of people. It can lead to severe economic, social, and environmental consequences. It can also have several impacts on agriculture, industry, and households, leading to a decrease in human quality of life. To address water scarcity, governments, communities, and individuals must work in synergy for the sake of water resources conservation and the implementation of sustainable water management practices. Following this urge, the enhancement of water treatment processes and the development of novel ones is a must. Here, we have investigated the potential of the applicability of “Green Aerogels” in water treatment’s ion removal section. Three families of aerogels originating from nanocellulose (NC), chitosan (CS), and graphene (G) are investigated. In order to reveal the difference between aerogel samples in-hand, a “Principal Component Analysis” (PCA) has been performed on the physical/chemical properties of aerogels, from one side, and the adsorption features, from another side. Several approaches and data pre-treatments have been considered to overcome any bias of the statistical method. Following the different followed approaches, the aerogel samples were located in the center of the biplot and were surrounded by different physical/chemical and adsorption properties. This would probably indicate a similar efficiency in the ion removal of the aerogels in-hand, whether they were nanocellulose-based, chitosan-based, or even graphene-based. In brief, PCA has shown a similar efficiency of all the investigated aerogels towards ion removal. The advantage of this method is its capacity to engage and seek similarities/dissimilarities between multiple factors, with the elimination of the shortcomings for the tedious and time-consuming bidimensional data visualization.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3