Application of Principal Component Analysis for the Elucidation of Operational Features for Pervaporation Desalination Performance of PVA-Based TFC Membrane

Author:

Chaouk Hamdi12,Obeid Emil1ORCID,Halwani Jalal2ORCID,Arayro Jack1ORCID,Mezher Rabih1ORCID,Amine Semaan1,Gazo Hanna Eddie1ORCID,Mouhtady Omar1ORCID,Younes Khaled1ORCID

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

2. Water and Environment Sciences Laboratory, Lebanese University, Tripoli P.O. Box 6573/14, Lebanon

Abstract

Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane processes, offering insights into complex datasets, identifying crucial factors influencing membrane performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In this study, PCA is applied to understand operational features affecting pervaporation desalination performance of PVA-based TFC membranes. PCA-biplot representation reveals that the first two principal components (PCs) accounted for 62.34% of the total variance, with normalized permeation with selective layer thickness (Pnorm), water permeation flux (P), and operational temperature (T) contributing significantly to PC1, while salt rejection dominates PC2. Membrane clustering indicates distinct influences, with membranes grouped based on correlation with operational factors. Excluding outliers increases total variance to 74.15%, showing altered membrane arrangements. Interestingly, the adopted strategy showed a high discrepancy between P and Pnorm, indicating the relevance of comparing between PVA membranes with specific layers and those with none. PCA results showed that Pnorm is more important than P in operational features, highlighting its significance in both research and practical applications. Our findings show that even know P remains a key performance property; Pnorm is critical for developing high-performance, efficient, and economically viable pervaporation desalination membranes. Subsequent PCA for membranes without specific layers (M1 to M6) and with specific layers (M7 to M11) highlights higher total variance and influence of variables, aiding in understanding membranes’ behavior and suitability under different conditions. Overall, PCA effectively delineates performance characteristics and potential applications of PVA-based TFC membranes. This study would confirm the applicability of the PCA approach in monitoring the operational efficiency of pervaporation desalination via these membranes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3