Optimization of the Dose Rate Effect in Tetrazolium Gellan Gel Dosimeters

Author:

Penev Kalin I.12ORCID,Mulligan Matt3,Mequanint Kibret14ORCID

Affiliation:

1. Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada

2. Modus Medical Devices Inc., London, ON N6H 5L6, Canada

3. London Regional Cancer Program, London, ON N6A 5W9, Canada

4. Biomedical Engineering Graduate Program, The University of Western Ontario, London, ON N6A 5B9, Canada

Abstract

Tetrazolium salts provide an appealing candidate for 3D gel dosimeters as they exhibit a low intrinsic color, no signal diffusion and excellent chemical stability. However, a previously developed commercial product (the ClearView 3D Dosimeter) based on a tetrazolium salt dispersed within a gellan gum matrix presented a noticeable dose rate effect. The goal of this study was to find out whether ClearView could be reformulated in order to minimize the dose rate effect by optimizing of the tetrazolium salt and gellan gum concentrations and by the addition a thickening agent, ionic crosslinkers, and radical scavengers. To that goal, a multifactorial design of experiments (DOE) was conducted in small-volume samples (4-mL cuvettes). It showed that the dose rate could be effectively minimized without sacrificing the integrity, chemical stability, or dose sensitivity of the dosimeter. The results from the DOE were used to prepare candidate formulations for larger-scale testing in 1-L samples to allow for fine-tuning the dosimeter formulation and conducting more detailed studies. Finally, an optimized formulation was scaled-up to a clinically relevant volume of 2.7 L and tested against a simulated arc treatment delivery with three spherical targets (diameter 3.0 cm), requiring different doses and dose rates. The results showed excellent geometric and dosimetric registration, with a gamma passing rate (at 10% minimum dose threshold) of 99.3% for dose difference and distance to agreement criteria of 3%/2 mm, compared to 95.7% in the previous formulation. This difference may be of clinical importance, as the new formulation may allow the quality assurance of complex treatment plans, relying on a variety of doses and dose rates; thus, expanding the potential practical application of the dosimeter.

Funder

National Sciences and Engineering Research Council

Ontario Center for Innovations

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3