Stereometric and Tribometric Studies of Polymeric Pin and Ceramic Plate Friction Pair Components

Author:

Niemczewska-Wójcik MagdalenaORCID,Wójcik Artur

Abstract

Two complementary approaches should be used for the full characterisation of friction pair components. The first approach consists of stereometric studies of machined as well as worn surface topography of the friction components with multiple measurement methods used. The second approach, tribometric studies, enables the tribological characteristics of the friction pair. This work presents the complete characterisation of polymeric pin and ceramic plate friction pair components based on studies with the use of three research instruments: an interference microscope, a scanning electron microscope and a tribological tester. The results of the studies showed that the same treatment conditions used for different but similar ceramic materials did not provide exactly the same characteristics of both the machined and worn surface topography. Moreover, the results showed that the material properties and machined surface topography of the ceramic component significantly affected the friction coefficient and linear wear as well as the wear intensity of the polymeric component. Connecting the two approaches, stereometric studies and tribometric studies, allowed for a better identification of the wear mechanism of the polymeric pin (i.e., abrasion, fatigue and adhesion wear) and the kind of wear products (polymeric material).

Funder

Ministry of Science and Higher Education - Polish Government

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. The Dual System for Characterizing the Technological and Operational Surface Layer of Friction Elements;Niemczewska-Wójcik,2018

2. Characterization of Areal Surface Texture,2013

3. Handbook of Surface and Nanometrology;Whitehouse,2011

4. Multiscale analyses and characterizations of surface topographies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3