Investigation on the Microstructure and Mechanical Properties of CNTs-AlSi10Mg Composites Fabricated by Selective Laser Melting

Author:

Luo Shixuan,Li RuifengORCID,He Peiyuan,Yue Hangyu,Gu Jiayang

Abstract

CNT-AlSi10Mg composites fabricated by SLM have drawn a lot attention in structural application due to its excellent strength, elasticity and thermal conductivities. A planetary ball milling method was used to prepare the carbon nanotube (CNT)-AlSi10Mg powders, and the CNT-AlSi10Mg composites were fabricated by selective laser melting (SLM). The density, microstructure and mechanical properties of CNT-AlSi10Mg composites were studied. The density of the test samples increased at first and then decreased with increasing scan speed. When the laser scan speed was 800 mm/s, the test sample exhibited the highest density. The hardness increased by approximately 26%, and the tensile strength increased by approximately 13% compared to those values exhibited by the unreinforced AlSi10Mg. The grains of CNT-AlSi10Mg composite are finer than that in the AlSi10Mg. The CNTs were distributed along the grain boundaries of AlSi10Mg. Some of the CNTs reacted with Al element and transformed into Al4C3 during SLM, while some of the CNTs still maintained their tubular structure. The combination of CNTs and Al4C3 has a significant improvement in mechanical properties of the composites through fine grain strengthening, second phase strengthening, and load transfer strengthening.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Royal Society International Exchanges 2018 Cost Share (China) Scheme

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3