Advancements in Laser Powder Bed Fusion of Carbon Nanotubes-Reinforced AlSi10Mg Alloy: A Comprehensive Analysis of Microstructure Evolution, Properties, and Future Prospects

Author:

Abedi Mohammad1ORCID,Moskovskikh Dmitry1ORCID,Nepapushev Andrey1ORCID,Suvorova Veronika1ORCID,Wang Haitao2,Romanovski Valentin13ORCID

Affiliation:

1. Center of Functional Nanoceramics, National University of Science and Technology MISiS, 119049 Moscow, Russia

2. College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China

3. Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA

Abstract

Laser powder bed fusion (L-PBF) stands out as a promising approach within the realm of additive manufacturing, particularly for the synthesis of CNT-AlSi10Mg nanocomposites. This review delves into a thorough exploration of the transformation in microstructure, the impact of processing variables, and the physico-mechanical characteristics of CNT-AlSi10Mg nanocomposites crafted via the L-PBF technique. Moreover, it consolidates a substantial corpus of recent research, proffering invaluable insights into optimizing L-PBF parameters to attain the desired microstructures and enhanced properties. The review centers its attention on pivotal facets, including the dispersion and distribution of CNTs, the formation of porosity, and their subsequent influence on wear resistance, electrical and thermal conductivity, tensile strength, thermal expansion, and hardness. In line with a logical progression, this review paper endeavors to illuminate the chemical composition, traits, and phase configuration of AlSi10Mg-based parts fabricated via L-PBF, juxtaposing them with their conventionally manufactured counterparts. Emphasis has been placed on elucidating the connection between the microstructural evolution of these nanocomposites and the resultant physico-mechanical properties. Quantitative data culled from the literature indicate that L-PBF-produced parts exhibit a microhardness of 151 HV, a relative density of 99.7%, an ultimate tensile strength of 70×103 mm3N.m, and a tensile strength of 756 MPa.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3