Effect of Microstructure and Hardness on Cavitation Erosion and Dry Sliding Wear of HVOF Deposited CoNiCrAlY, NiCoCrAlY and NiCrMoNbTa Coatings

Author:

Szala MirosławORCID,Walczak MariuszORCID,Świetlicki Aleksander

Abstract

Metallic coatings based on cobalt and nickel are promising for elongating the life span of machine components operated in harsh environments. However, reports regarding the ambient temperature tribological performance and cavitation erosion resistance of popular MCrAlY (where M = Co, Ni or Co/Ni) and NiCrMoNbTa coatings are scant. This study comparatively investigates the effects of microstructure and hardness of HVOF deposited CoNiCrAlY, NiCoCrAlY and NiCrMoNbTa coatings on tribological and cavitation erosion performance. The cavitation erosion test was conducted using the vibratory method following the ASTM G32 standard. The tribological examination was done using a ball-on-disc tribometer. Analysis of the chemical composition, microstructure, phase composition and hardness reveal the dry sliding wear and cavitation erosion mechanisms. Coatings present increasing resistance to both sliding wear and cavitation erosion in the following order: NiCoCrAlY < CoNiCrAlY < NiCrMoNbTa. The tribological behaviour of coatings relies on abrasive grooving and oxidation of the wear products. In the case of NiCrMoNbTa coatings, abrasion is followed by the severe adhesive smearing of oxidised wear products which end in the lowest coefficient of friction and wear rate. Cavitation erosion is initiated at microstructure discontinuities and ends with severe surface pitting. CoNiCrAlY and NiCoCrAlY coatings present semi brittle behavior, whereas NiCrMoNbTa presents ductile mode and lesser surface pitting, which improves its anti-cavitation performance. The differences in microstructure of investigated coatings affect the wear and cavitation erosion performance more than the hardness itself.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3