Advanced Functional Metal-Ceramic and Ceramic Coatings Deposited by Low-Pressure Cold Spraying: A Review

Author:

Winnicki MarcinORCID

Abstract

Based on the recent analysis of various databases, cold spray (CS), the newest method among thermal spraying technologies, has received the unabated attention of hundreds of researchers continuously since its invention in the 1980s. The significance of CS lies in the low process temperature, which usually ensures compressive residual stresses and allows for the formation of coatings on a thermally sensitive substrate. This paper concerns the low-pressure cold spray (LPCS) variant employed for forming metal matrix composites (MMCs) with high ceramic contents and all-ceramic coatings. At the very beginning, the influence of LPCS process parameters on deposition efficiency (DE) is analysed. In the next part, the most useful feedstock powder preparation techniques for LCPS are presented. Due to the combination of bottom-up powder production methods (e.g., sol-gel (SG)) with LCPS, the metal matrix that works as a binder for ceramic particles in MMC coatings can be removed, resulting in all-ceramic coatings. Furthermore, with optimization of spraying parameters, it is possible to predict and control phase transformation in the feedstock material. Further in the paper, differences in the bonding mechanism of metal–ceramic mixtures and ceramic particles are presented. The properties and applications of various MMC and ceramic coatings are also discussed. Finally, the exemplary direction of CS development is suggested.

Funder

Narodowym Centrum Nauki

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference310 articles.

1. Cold Spray Technology;Papyrin,2007

2. A method of cold gas-dynamic deposition;Alkhimov;Sov. Phys. Dokl.,1990

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3