Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy

Author:

Zhou ZhiyongORCID,Zhang Haiwei,Qin Weiyang,Zhu Pei,Wang Ping,Du Wenfeng

Abstract

Bridges play an increasingly more important role in modern transportation, which is why many sensors are mounted on it in order to provide safety. However, supplying reliable power to these sensors has always been a great challenge. Scavenging energy from bridge vibration to power the wireless sensors has attracted more attention in recent years. Moreover, it has been proved that the linear energy harvester cannot always work efficiently since the vibration energy of the bridge distributes over a broad frequency band. In this paper, a nonlinear energy harvester is proposed to enhance the performance of harvesting bridge vibration energy. Analyses on potential energy, restoring force, and stiffness were carried out. By adjusting the separation distance between magnets, the harvester could own a low and flat potential energy, which could help the harvester oscillate on a high-energy orbit and generate high output. For validation, corresponding experiments were carried out. The results show that the output of the optimal configuration outperforms that of the linear one. Moreover, with the increase in vehicle speed, a component of extremely low frequency is gradually enhanced, which corresponds to the motion on the high-energy orbit. This study may give an effective method of harvesting energy from bridge vibration excited by moving vehicles with different moving speeds.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Scientific Research Project of Colleges and Universities in Henan Province

Key Research Development and Promotion Project in Henan Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3