Characterization of magnetostrictive bi-stable rotational vibration energy harvester with integrated centrifugal effect

Author:

Dong WeiweiORCID,Liang Quan,Liu HuifangORCID,Mei XutaoORCID,Shu Liang,Liu Zhanqi,Chang Yunlong

Abstract

Abstract Rotational machinery is a common presence in dust still production, and the occurrence of operational failures in components like engines and turbine blades necessitates effective measures. To solve this challenge, remote structural health monitoring using energy harvesting and wireless sensors has been widely employed to realize self-powered sensing. This study proposes a magnet-induced bi-stable rotational energy harvester (REH), which utilizes the centrifugal effect to broaden the effective frequency bandwidth, enabling efficient energy harvesting in complex environments. A comprehensive mathematical model has been established to facilitate the dynamic characteristics of the bi-stable system, taking into account the centrifugal effect. The theoretical results demonstrate that the gap distance of magnetic configuration has great effects on the bi-stable system. Additionally, the centrifugal effect decided by the centrifugal radius and rotational speeds also affects the stable high-energy orbit oscillations. Furthermore, experimental results indicate that the proposed REH can effectively operate within the frequency range of 230–290 rpm, with a maximum RMS voltage of 780 mV and corresponding power of 4.35 mW. These findings validate the performance of the bi-stable magnetostrictive REH with the centrifugal effect and indicate its potential to effectively address the power supply challenges for wireless sensors. Overall, this study presents a promising solution for enhancing the energy harvesting performance of REH and also provides insights into the design of high-efficiency REH by magnet-induced nonlinearity and the centrifugal effect.

Funder

The Postgraduate Education Reform Project of Liaoning Province

Shenyang Key Technology Special Project of “The Open Competition Mechanism to Select the Best Candidates”

Liaoning Revitalization Talents Program

Key Projects of Liaoning Provincial Education Department

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3