Performance Comparison of Lattice-Matched AlInN/GaN/AlGaN/GaN Double-Channel Metal–Oxide–Semiconductor High-Electron Mobility Transistors with Planar Channel and Multiple-Mesa-Fin-Channel Array

Author:

Lee Hsin-YingORCID,Ju Ying-Hao,Chyi Jen-Inn,Lee Ching-TingORCID

Abstract

In this work, Al0.83In0.17N/GaN/Al0.18Ga0.82N/GaN epitaxial layers used for the fabrication of double-channel metal–oxide–semiconductor high-electron mobility transistors (MOSHEMTs) were grown on silicon substrates using a metalorganic chemical vapor deposition system (MOCVD). A sheet electron density of 1.11 × 1013 cm−2 and an electron mobility of 1770 cm2/V-s were obtained. Using a vapor cooling condensation system to deposit high insulating 30-nm-thick Ga2O3 film as a gate oxide layer, double-hump transconductance behaviors with associated double-hump maximum extrinsic transconductances (gmmax) of 89.8 and 100.1 mS/mm were obtained in the double-channel planar MOSHEMTs. However, the double-channel devices with multiple-mesa-fin-channel array with a gmmax of 148.9 mS/mm exhibited single-hump transconductance behaviors owing to the better gate control capability. Moreover, the extrinsic unit gain cutoff frequency and maximum oscillation frequency of the devices with planar channel and multiple-mesa-fin-channel array were 5.7 GHz and 10.5 GHz, and 6.5 GHz and 12.6 GHz, respectively. Hooge’s coefficients of 7.50 × 10−5 and 6.25 × 10−6 were obtained for the devices with planar channel and multiple-mesa-fin-channel array operating at a frequency of 10 Hz, drain–source voltage of 1 V, and gate–source voltage of 5 V, respectively.

Funder

Ministry of Science and Technology of the Republic of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3