Comprehensive Knowledge-Driven AI System for Air Classification Process

Author:

Otwinowski HenrykORCID,Krzywanski JaroslawORCID,Urbaniak Dariusz,Wylecial TomaszORCID,Sosnowski MarcinORCID

Abstract

Air classifier devices have a distinct advantage over other systems used to separate materials. They maximize the mill’s capacity and therefore constitute efficient methods of reducing the energy consumption of crushing and grinding operations. Since improvement in their performance is challenging, the development of an efficient modeling system is of great practical significance. The paper introduces a novel, knowledge-based classification (FLClass) system of bulk materials. A wide range of operating parameters are considered in the study: the mean mass and the Sauter mean diameter of the fed material, classifier rotor speed, working air pressure, and test conducting time. The output variables are the Sauter mean diameter and the cut size of the classification product, as well as the performance of the process. The model was successfully validated against experimental data. The maximum relative error between the measured and predicted data is lower than 9%. The presented fuzzy-logic-based approach allows an optimization study of the process to be conducted. For the considered range of input parameters, the highest performance of the classification process is equal to almost 362 g/min. To the best of our knowledge, this paper is the first one available in open literature dealing with the fuzzy logic approach in modeling the air classification process of bulk materials.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3