Coal-plastic waste blendings. Experimental research and prediction of the thermal process

Author:

Kijo-Kleczkowska Agnieszka1,Gnatowski Adam1,Gajek Marcin2,Krzywanski Jaroslaw3,Szumera Magdalena2,Knaś Krzysztof1,Kwiatkowski Dariusz1

Affiliation:

1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Dabrowskiego 69, 42-201 Czestochowa, Poland

2. AGH University of Krakow, Faculty of Materials Science and Ceramics, Mickiewicza 30, Krakow, Poland

3. Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, Armii Krajowej 13/15, 42-200 Czestochowa, Poland

Abstract

The topic of waste incineration/co-incineration is critical, given the increasingly stringent regulations on environmental aspects. The widespread use of polymeric materials generates significant waste, posing an ecological problem. Current regulations mandate a reduction in the landfilling of plastic waste, which should be replaced by recycling, with the possi-bility of exploiting the energy potential due to its high calorific value. The electricity generation in Poland is mainly based on coal, so using polymers as alternative fuels is an important research issue. The research results presented in this paper make it possible to compare the properties of selected waste plastics and coal and their behavior during thermal processes, considering the quality of the gases released. Based on the thermal analyses, a FuzzyTherm model was introduced based on one of the fuzzy logic methods, one of the main artificial intelligence modeling approaches. The model predicts the temperatures corresponding to endothermic and exothermic reactions. The model achieved good accuracy. The maximum relative error between measured and calculated data is lower than 11%. These aspects constitute an innovative element of this paper.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3