Biocompatibility and Microstructure-Based Stress Analyses of TiNbZrTa Composite Films

Author:

Lai Bo-Wei,Chang Yin-Yu,Shieh Tzong-MingORCID,Huang Heng-LiORCID

Abstract

Background: the clinical application of orthopedic or dental implants improves the quality of the lives of patients. However, the long-term use of implants may lead to implant loosening and related complications. The purpose of this study is to deposit titanium (Ti)-niobium (Nb)-zirconium (Zr)-tantalum (Ta) alloys on the surface of Ti-6Al-4V to increase structural strength and biocompatibility for the possible future application of implants. Materials and methods: Ti, Nb, Zr, and Ta served as the materials for the surface modification of the titanium alloy. TiNbZr and TiNbZrTa coatings were produced using cathodic arc evaporation, and a small amount of nitrogen was added to produce TiNbZrTa(N) film. Annealing and oxidation were then conducted to produce TiNbZrTa-O and TiNbZrTa(N)-O coatings. In this study, biological tests and finite element analyses of those five alloy films, as well as uncoated Ti-6Al-4V, were performed. Human osteosarcoma cells (MG-63) and mouse fibroblast cells (L-929) were used to analyze cytotoxicity, cell viability, and cell morphology, and the bone differentiation of MG-63 was evaluated in an alkaline phosphatase experiment. Furthermore, for measuring the gene expression level of L-929, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted. The three-dimensional (3D) computational models of the coated and uncoated sample films were constructed using images of transmission electron microscopy and computer-aided design software and, then, the stress distributions of all models were evaluated by finite element analysis. Result: the cytotoxicity test revealed that the surface treatment had no significant cytotoxic effects on MG-63 and L-929 cells. According to the results of the cell viability of L-929, more cell activity was observed in the surface-treated experimental group than in the control group; for MG-63, the cell viability of the coated samples was similar to that of the uncoated samples. In the cell morphology analysis, both MG-63 and L-929 exhibited attached filopodia and lamellipodia, verifying that the cells were well attached. The alkaline phosphatase experiment demonstrated that the surface treatment did not affect the characteristics of early osteogenic differentiation, whereas RT-qPCR analysis showed that surface treatment can promote better performance of L-929 cells in collagen, type I, α1, and fibronectin 1. Finally, the results of the finite element analysis revealed that the coated TiNb interlayer can effectively reduce the stress concentration inside the layered coatings. Conclusions: TiNbZrTa series films deposited using cathodic arc evaporation had excellent biocompatibility with titanium alloys, particularly in regard to soft tissue cells, which exhibited an active performance. The finite element analysis verified that the TiNb interlayer can reduce the stress concentration inside TiNbZrTa series films, increasing their suitability for application in biomedical implants in the future.

Funder

Ministry of Science and Technology, Taiwan

China Medical University, Taiwan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3