Abstract
Abstract
Titanium and its alloys have been widely used in bone tissue defect treatment owing to their excellent comprehensive properties. However, because of the biological inertness of the surface, it is difficult to achieve satisfactory osseointegration with the surrounding bone tissue when implanted into the body. Meanwhile, an inflammatory response is inevitable, which leads to implantation failure. Therefore, solving these two problems has become a new research hotspot. In current studies, various surface modification methods were proposed to meet the clinical needs. Yet, these methods have not been classified as a system to guide the follow-up research. These methods are demanded to be summarized, analyzed, and compared. In this manuscript, the effect of physical signal regulation (multi-scale composite structure) and chemical signal regulation (bioactive substance) generated by surface modification in promoting osteogenesis and reducing inflammatory responses was generalized and discussed. Finally, from the perspective of material preparation and biocompatibility experiments, the development trend of surface modification in promoting titanium implant surface osteogenesis and anti-inflammatory research was proposed.
Funder
National Natural Science Foundation of China
Youth Foundation Projects of Natural Science Foundation of Shandong Province
Education and Teaching Reform Research Project of Shandong University
Key Research and Development Program of Shandong Province
Major Industrial Research Projects in Shandong Province for the Transition to New from Old Economic Engines
Key Research and Development Project of Jining City
Shandong Provincial Key R&D Program
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献