Development of 6 DOF Displacement Sensor Using RUS Parallel Mechanism

Author:

Kim Donghyun,Choi Sunghyun,Yun DongwonORCID

Abstract

Nowadays, many types of manipulators have been developed and used in lots of production processes. Force-based control methods or additional mechanical devices called Remote Center Compliance (RCC) have increased the system’s compliance and accuracy. However, the force-based control method’s operating speed is low, and the RCC cannot measure deflection. Thus it cannot calculate the position of the end-effector accurately. For accurate force and position control, it is necessary to measure the deflection of the RCC and to perform this, a different type of device than the existing RCC is required. This paper presents the necessity and possibility of developing an RCC capable of measuring the displacement of the end-effector and showing the displacement sensor’s feasibility using a 6 DOF parallel mechanism. In particular, we suggest that it is possible to make devices cheaper and more compact by using angular displacement sensors. Finally, we show the possibility of use in actual industrial sites through peg-in-hole simulation using the device.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3