Abstract
The precipitation phase (PP) affects the hydrologic cycle which in turn affects the climate system. A lower ratio of snow to rain due to climate change affects timing and duration of the stream flow. Thus, more knowledge about the PP occurrence and drivers is necessary and especially important in cities dependent on water coming from glaciers, such as Quito, the capital of Ecuador (2.5 million inhabitants), depending in part on the Antisana glacier. The logistic models (LM) of PP rely only on air temperature and relative humidity to predict PP. However, the processes related to PP are far more complex. The aims of this study were threefold: (i) to compare the performance of random forest (RF) and artificial neural networks (ANN) to derive PP in relation to LM; (ii) to identify the main drivers of PP occurrence using RF; and (iii) to develop LM using meteorological drivers derived from RF. The results show that RF and ANN outperformed LM in predicting PP in 8 out of 10 metrics. RF indicated that temperature, dew point temperature, and specific humidity are more important than wind or radiation for PP occurrence. With these predictors, parsimonious and efficient models were developed showing that data mining may help in understanding complex processes and complements expert knowledge.
Funder
ESCUELA POLITECNICA NACIONAL
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献