Variation Characteristics of Summer Water Vapor Budget and Its Relationship with the Precipitation over the Sichuan Basin

Author:

Qi Dongmei,Li Yueqing,Zhou ChangyanORCID

Abstract

Based on the daily precipitation data from the meteorological stations in Sichuan and the monthly average ERA-Interim reanalysis data from 1979 to 2016, the variation characteristics of summer water vapor budget in the Sichuan Basin and its relationship with precipitation are discussed in this study. The results show that, in summer, the water vapor in the Sichuan Basin and its four sub-basins flows in from the southern and western boundaries and flows out through the eastern and northern boundaries, and the basin is obviously a water vapor sink. From 1979 to 2016, the water vapor inflow from the southern and western boundaries significantly decreased, as well as the water vapor outflow through the eastern boundary. The summer precipitation in the Sichuan Basin is significantly positively correlated with the water vapor inflow at the southern boundary and net water vapor budget of the basin in the same period, and it is negatively correlated with the water vapor outflow at the northern boundary. The southern and northern boundaries are the two most important boundaries for the summer precipitation in the Sichuan Basin. Additionally, this study reveals that, under the multi-scale topography on the east side of the Tibet Plateau, the spatio-temporal distribution of precipitation in the Sichuan Basin results from the interactions between the unique topography of the Sichuan Basin and the different modes of water-vapor transport from low latitudes. The atmospheric circulation over the key area of air–sea interaction in the tropical region and its accompanying systems, as well as the anomalies of regional circulations and water vapor transport over the eastern China and Sichuan Basin, are the main reasons for the variation in summer precipitation in the Sichuan Basin.

Funder

the Second Tibetan Plateau Scientific Expedition and Research (STEP) program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference50 articles.

1. Atmospheric Rivers, Floods and the Water Resources of California;Michael;Water,2011

2. Potential Climate Change Impacts on Water Resources in Egypt

3. IPCC Climate Change 2001, Impacts, Adaptation, and Vulnerability;James,2001

4. Detecting spatiotemporal precipitation variability in Portugal using multichannel singular spectral analysis;Antunes;Int. J. Climatol.,2010

5. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3