Smart Detecting and Versatile Wearable Electrical Sensing Mediums for Healthcare

Author:

Ali Ahsan1,Ashfaq Muaz1,Qureshi Aleen1,Muzammil Umar1,Shaukat Hamna2,Ali Shaukat1,Altabey Wael A.34ORCID,Noori Mohammad56ORCID,Kouritem Sallam A.4ORCID

Affiliation:

1. Department of Mechatronics Engineering, University of Wah, Wah Cantonment 47040, Pakistan

2. Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang 22621, Pakistan

3. International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China

4. Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

5. Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA

6. School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

A rapidly expanding global population and a sizeable portion of it that is aging are the main causes of the significant increase in healthcare costs. Healthcare in terms of monitoring systems is undergoing radical changes, making it possible to gauge or monitor the health conditions of people constantly, while also removing some minor possibilities of going to the hospital. The development of automated devices that are either attached to organs or the skin, continually monitoring human activity, has been made feasible by advancements in sensor technologies, embedded systems, wireless communication technologies, nanotechnologies, and miniaturization being ultra-thin, lightweight, highly flexible, and stretchable. Wearable sensors track physiological signs together with other symptoms such as respiration, pulse, and gait pattern, etc., to spot unusual or unexpected events. Help may therefore be provided when it is required. In this study, wearable sensor-based activity-monitoring systems for people are reviewed, along with the problems that need to be overcome. In this review, we have shown smart detecting and versatile wearable electrical sensing mediums in healthcare. We have compiled piezoelectric-, electrostatic-, and thermoelectric-based wearable sensors and their working mechanisms, along with their principles, while keeping in view the different medical and healthcare conditions and a discussion on the application of these biosensors in human health. A comparison is also made between the three types of wearable energy-harvesting sensors: piezoelectric-, electrostatic-, and thermoelectric-based on their output performance. Finally, we provide a future outlook on the current challenges and opportunities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3