Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs

Author:

Elgamal Mohamed A.,Elgamal Hassan,Kouritem Sallam A.

Abstract

AbstractMany electrical devices can be powered and operated by harvesting the wasted energy of the surroundings. This research aims to overcome the challenges of output power with a sharp peak, small bandwidth, and the huge dimensions of the piezoelectric energy harvesters relative to the output power. The aforementioned challenges motivated us to investigate the effect of nonlinearity in the shape (tapered and straight cross-section area) as well as the fixation method (the number of fastened ends) to determine the optimal design with high output power and wide working frequency. This research proposes a novel piezoelectric energy harvester array, where each beam is made up of three fixed beams that are joined together by a center mass. The proposed design produces an output power of 35 mW between 25 and 40 Hz. The output power of the proposed design is 3.24 times more than the conventional designs. The recommended approach is simulated utilizing finite element analysis FEA. Analytical and experimental methods validate the proposed FEA, which exhibits excellent agreement.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3