Lightweight Self-Detection and Self-Calibration Strategy for MEMS Gas Sensor Arrays

Author:

Liu BingORCID,Zhou Yanzhen,Fu Hongshuo,Fu Ping,Feng Lei

Abstract

With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, the normal operation of a gas sensing system depends heavily on the accuracy of the sensor output. Therefore, a lightweight Self-Detection and Self-Calibration strategy for MEMS gas sensor arrays is proposed in this paper to monitor the working status of sensor arrays and correct the abnormal data in real time. Evaluations on real-world datasets indicate that the strategy has high performance of fault detection, isolation, and data recovery. Furthermore, our method has low computation complexity and low storage resource occupation. The board-level verification on CC1350 shows that the average calculation time and running power consumption of the algorithm are 0.28 ms and 9.884 mW. The proposed strategy can be deployed on most resource-limited IoT devices to improve the reliability of gas sensing systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3