Effect of Actual Recuperators’ Effectiveness on the Attainable Efficiency of Supercritical CO2 Brayton Cycles for Solar Thermal Power Plants

Author:

Stamatellos GeorgeORCID,Stamatelos TassosORCID

Abstract

One of the most promising concentrated solar power technologies is the central receiver tower power station with heliostat field, which has attracted renewed research interest in the current decade. The introduction of the sCO2 recompression Brayton cycles in the near future installations instead of the Rankine cycle is very probable, due to the prospects of a significant efficiency improvement, process equipment size and capital cost reduction. In this study, energy and exergy analysis of a recompression Brayton cycle configuration for a central receiver power station are performed. Special emphasis is given to the computation of actual performance for the High-Temperature Recuperator and the Low-Temperature Recuperator. The results define realistic thermal and exergetic efficiency limits for the specific cycle configurations applied on a central receiver solar power plant with variable turbine entry temperature. Thermal efficiency, predicted with the improved accuracy of heat exchanger computations, does not exceed the 50% target. Overall, a realizable total power plant efficiency of 37% at 900 K turbine entry temperature is predicted, which is a significant improvement on the current state-of-the-art with steam Rankine cycles.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

1. Concentrating Solar Power: Energy from Mirrors,2001

2. Concentrating Solar Power (CSP): Power Tower Projects;SolarPaces,2022

3. Concentrating Solar Power Gen3 Demonstration Roadmap,2017

4. Renewable Power Remains Cost-Competitive amid Fossil Fuel Crisis https://www.irena.org/newsroom/pressreleases/2022/Jul/Renewable-Power-Remains-Cost-Competitive-amid-Fossil-Fuel-Crisis

5. A review of solar collectors and thermal energy storage in solar thermal applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3